Quantifying chaos using Lagrangian descriptors

Haris Skokos

Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Work in collaboration with:

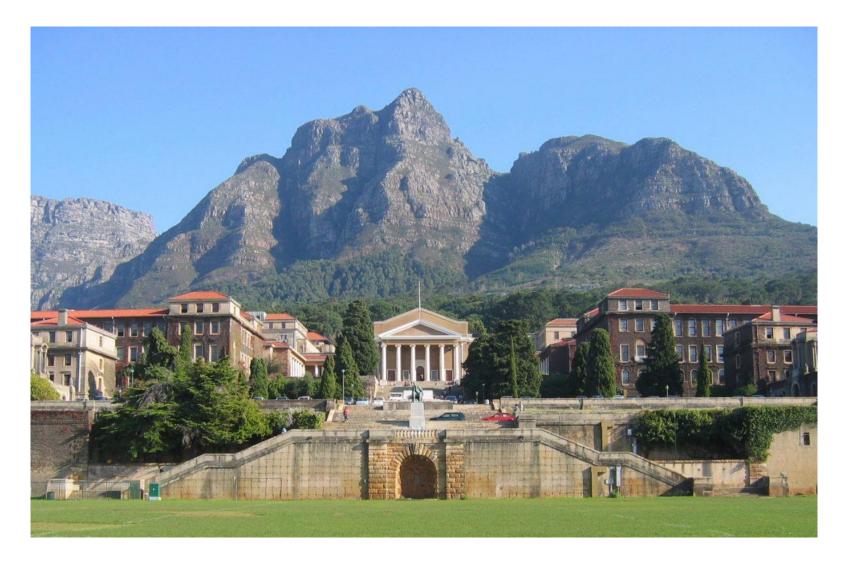
Sebastian Zimper, Malcolm Hillebrand, Arnold Ngapasare (University of Cape Town, South Africa) Matthaios Katsanikas (Academy of Athens, Greece) Stephen Wigging (University of Bristol, UK, & United States Nevel Academy, USA)

Stephen Wiggins (University of Bristol, UK & United States Naval Academy, USA)

4th International Conference on Integrable Systems and Nonlinear Dynamics (ISND) 2023 27 September 2023, Yaroslavl, Russia

University of Cape Town (UCT)

University of Cape Town (UCT)



Cape Town

Outline

- Lagrangian descriptors (LDs)
- Smaller Alignment Index (SALI)
- Chaos diagnostics based on LDs:
 - ✓ the difference of LDs of neighboring orbits
 - ✓ the ratio of LDs of neighboring orbits
- Application to the Hénon Heiles system
- Summary

Lagrangian descriptors (LDs)

The computation of LDs is based on the accumulation of some positive scalar value along the path of individual orbits.

Consider an N dimensional continuous time dynamical system

$$\dot{x} = \frac{dx(t)}{dt} = f(x, t)$$

The Arclength Definition [Madrid & Mancho, Chaos (2009) – Mendoza & Mancho, PRL (2010) – Mancho et al., Commun. Nonlin. Sci. Num. Simul. (2013)].

Forward time *LD*:

$$LD^f(x,\tau) = \int_0^\tau \|\dot{x}(t)\| dt$$

Backward time *LD*:

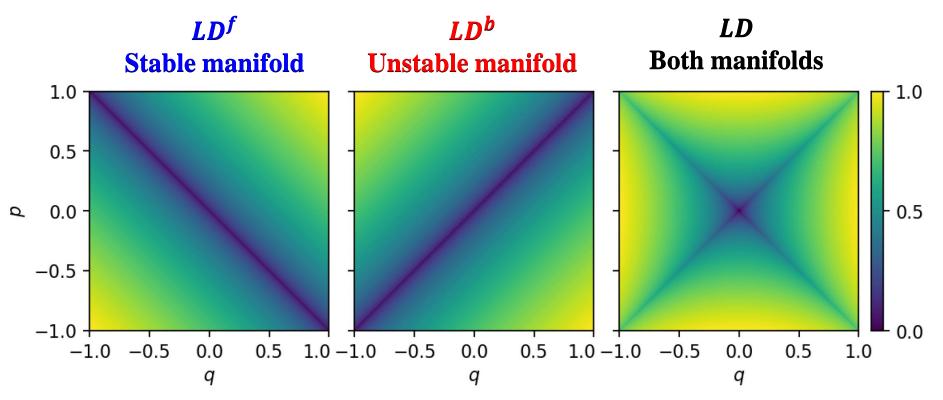
$$LD^{b}(x,\tau) = \int_{-\tau}^{0} \|\dot{x}(t)\| dt$$

Combined *LD*:

$$LD(x,\tau) = LD^b(x,\tau) + LD^f(x,\tau)$$

LDs: 1 degree of freedom (dof) Hamiltonian $H(q,p) = \frac{1}{2} \left(p^2 - q^2 \right)$

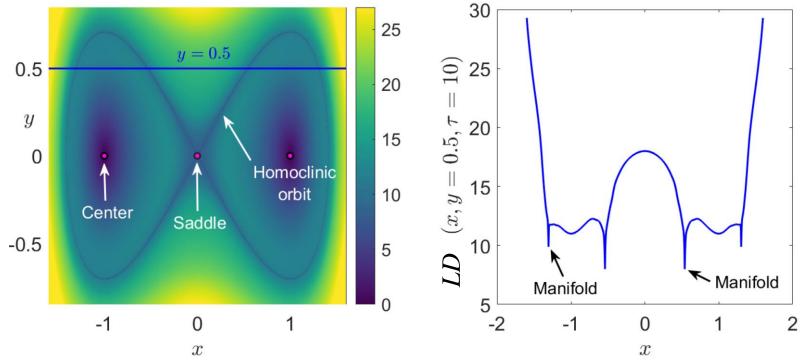
The system has a hyperbolic fixed point at the origin. The LDs can be used to display the stable and unstable manifolds of this point.



From Agaoglou et al. 'Lagrangian descriptors: Discovery and quantification of phase space structure and transport', 2020, https://doi.org/10.5281/zenodo.3958985

LDs: 1 dof Duffing Oscillator $H(x, y) = \frac{1}{2}y^2 + \frac{1}{4}x^4 - \frac{1}{2}x^2$

The system has three equilibrium points: a saddle located at the origin and two diametrically opposed centers at the points $(\pm 1, 0)$.



From Agaoglou et al. 'Lagrangian descriptors: Discovery and quantification of phase space structure and transport', 2020, https://doi.org/10.5281/zenodo.3958985

The location of the stable and unstable manifolds can be extracted from the ridges of the gradient field of the LDs since they are located at points where the forward and the backward components of the LD are non-differentiable.

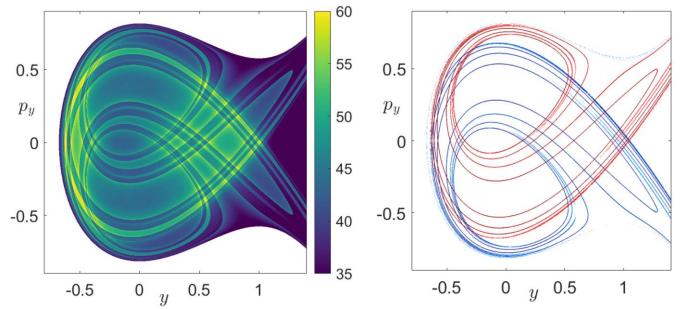
Lagrangian descriptors (LDs)

The 'p-norm' Definition [Lopesino et al., Commun. Nonlin. Sci. Num. Simul. (2015) – Lopesino et al., Int. J. Bifurc. Chaos (2017)]. Combined *LD* (usually p=1/2):

$$LD(x,\tau) = \int_{-\tau}^{\tau} \left(\sum_{i=1}^{N} |f_i(x,t)|^p \right) dt$$

Hénon-Heiles system: $H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$

Stable and unstable manifolds for H=1/3, \tau=10.



From Agaoglou et al. 'Lagrangian descriptors: Discovery and quantification of phase space structure and transport', 2020, https://doi.org/10.5281/zenodo.3958985

The Smaller Alignment Index (SALI)

Consider the 2N-dimensional phase space of a conservative dynamical system (symplectic map or Hamiltonian flow).

An orbit in that space with initial condition :

 $\mathbf{P}(\mathbf{0}) = (\mathbf{x}_1(\mathbf{0}), \mathbf{x}_2(\mathbf{0}), \dots, \mathbf{x}_{2N}(\mathbf{0}))$

and a deviation vector

 $v(0) = (\delta x_1(0), \delta x_2(0), \dots, \delta x_{2N}(0))$

The evolution in time (in maps the time is discrete and is equal to the number n of the iterations) of a deviation vector is defined by: •the variational equations (for Hamiltonian flows) and •the equations of the tangent map (for mappings)

Definition of the SALI

We follow the evolution in time of <u>two different initial</u> <u>deviation vectors</u> $(v_1(0), v_2(0))$, and define SALI [S., J. Phys. A (2001) – S & Manos, Lect. Notes Phys. (2016)] as:

$SALI(t) = min\{\|\widehat{v}_1(t) + \widehat{v}_2(t)\|, \|\widehat{v}_1(t) - \widehat{v}_2(t)\|\}$

where

$$\widehat{\boldsymbol{v}}_1(t) = \frac{\boldsymbol{v}_1(t)}{\|\boldsymbol{v}_1(t)\|}$$

When the two vectors become collinear

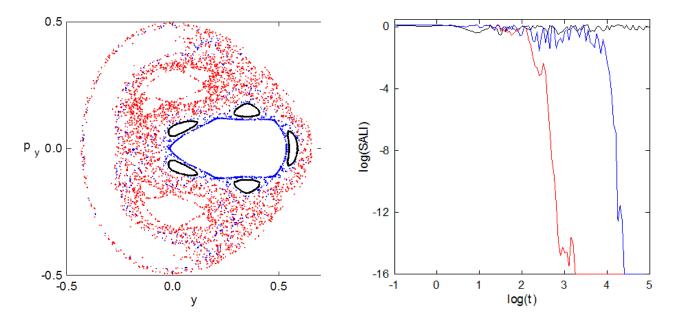
SALI(t) \rightarrow **0**

SALI – Hénon-Heiles system

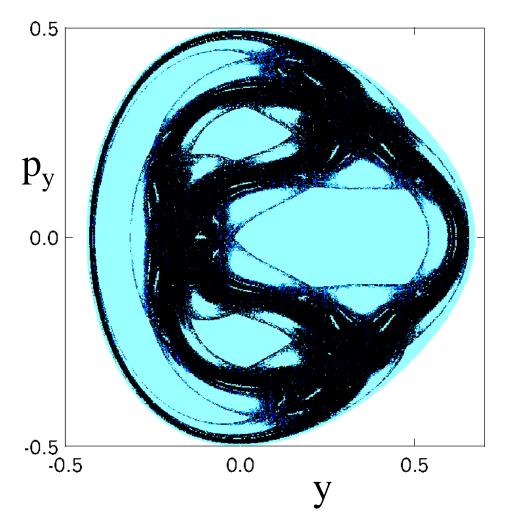
As an example, we consider the 2D Hénon-Heiles system:

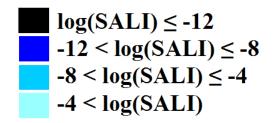
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y - \frac{1}{3} y^3$$

For E=1/8 we consider the orbits with initial conditions: Regular orbit, x=0, y=0.55, $p_x=0.2417$, $p_y=0$ Chaotic orbit, x=0, y=-0.016, $p_x=0.49974$, $p_y=0$ Chaotic orbit, x=0, y=-0.01344, $p_x=0.49982$, $p_y=0$



SALI – Hénon-Heiles system





Behavior of the SALI

2D maps

SALI→0 both for regular and chaotic orbits

following, however, completely different time rates which allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps

SALI→0 for chaotic orbits

SALI→constant ≠ 0 for regular orbits

Using LDs to quantify chaos

We consider orbits on a finite grid of an $n(\geq 1)$ -dimensional subspace of the $N(\geq n)$ -dimensional phase space of a dynamical system and their LDs. Any non-boundary point x in this subspace has 2n nearest neighbors

$$y_i^{\pm} = x \pm \sigma^{(i)} e^{(i)}, \qquad i = 1, 2, ..., n,$$

where $e^{(i)}$ is the *i*th usual basis vector in \mathbb{R}^n and $\sigma^{(i)}$ is the distance between successive grid points in this direction.

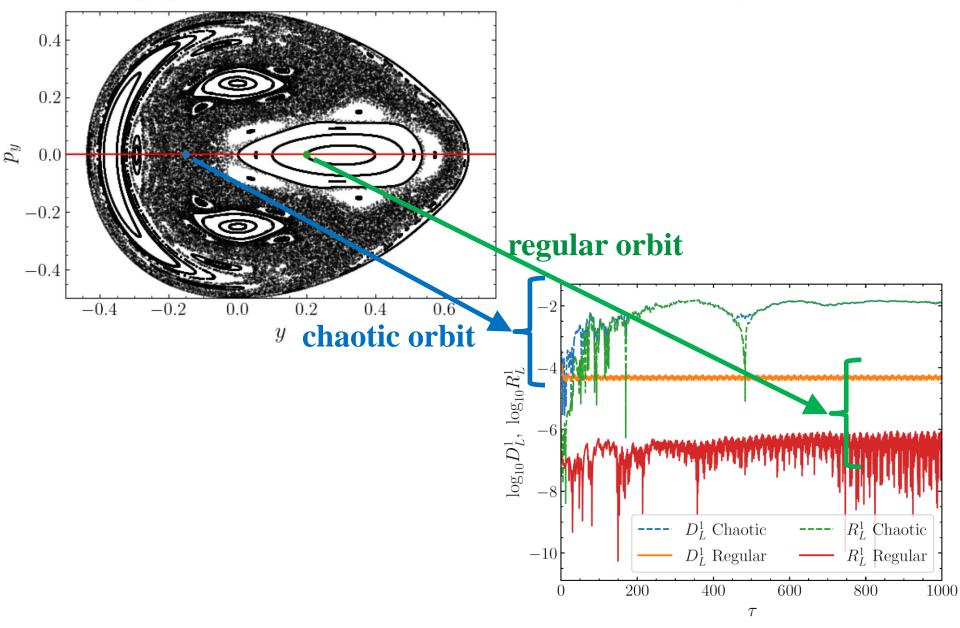
The difference D_L^n of neighboring orbits' LDs: $D_L^n(x) = \frac{1}{2n} \sum_{i=1}^n \frac{|LD^f(x) - LD^f(y_i^+)| + |LD^f(x) - LD^f(y_i^-)|}{LD^f(x)}.$

The ratio R_L^n of neighboring orbits' LDs:

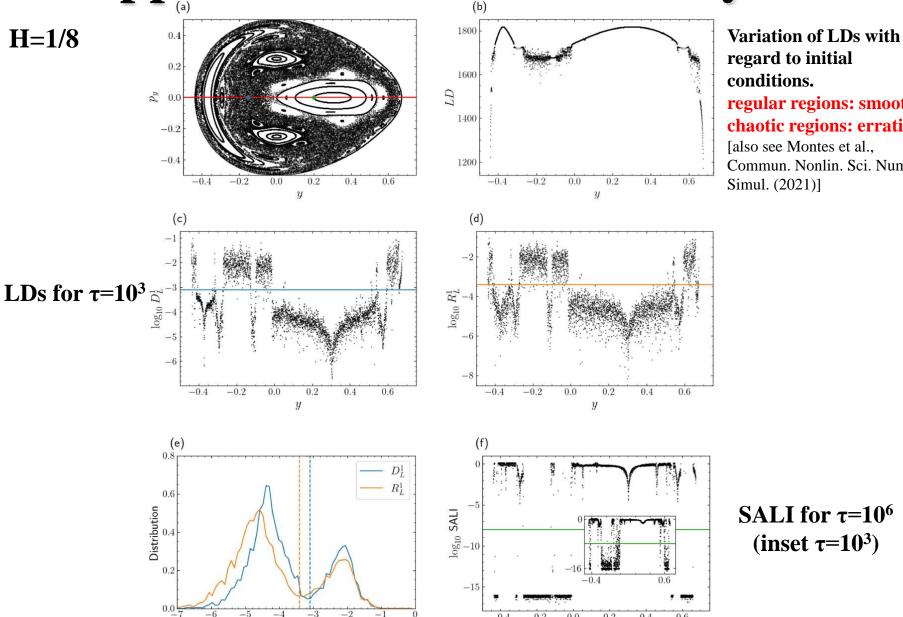
$$R_{L}^{n}(x) = \left| 1 - \frac{1}{2n} \sum_{i=1}^{n} \frac{LD^{f}(y_{i}^{+}) + LD^{f}(y_{i}^{-})}{LD^{f}(x)} \right|$$

Hillebrand et al., Chaos (2022) – Zimper et al., Physica D (2023)

Application: Hénon-Heiles system



Application: Hénon-Heiles system



 $\log_{10} D_I^1$, $\log_{10} R_I^1$

regard to initial conditions. regular regions: smooth chaotic regions: erratic [also see Montes et al., Commun. Nonlin. Sci. Num. Simul. (2021)]

SALI for $\tau = 10^6$ (inset $\tau = 10^3$)

0.2

y

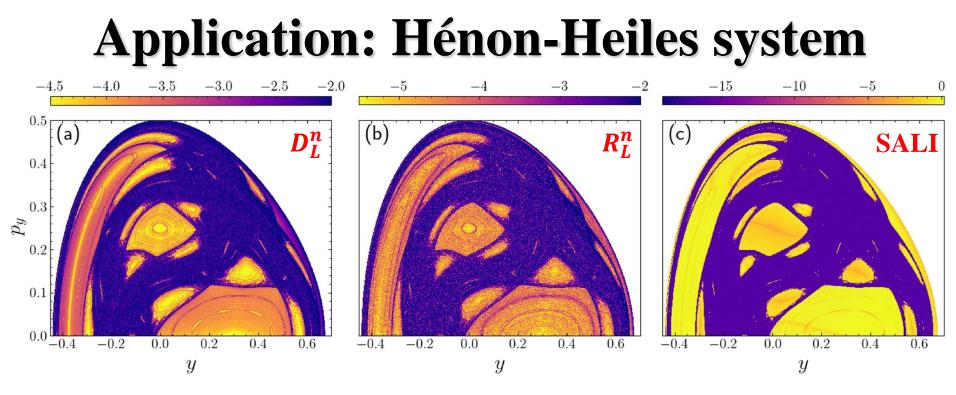
0.4

0.6

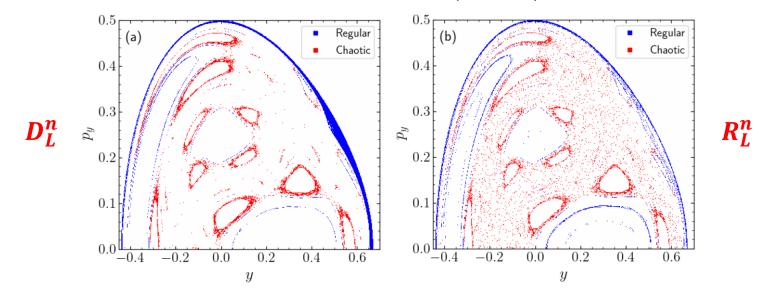
-0.4

-0.2

0.0



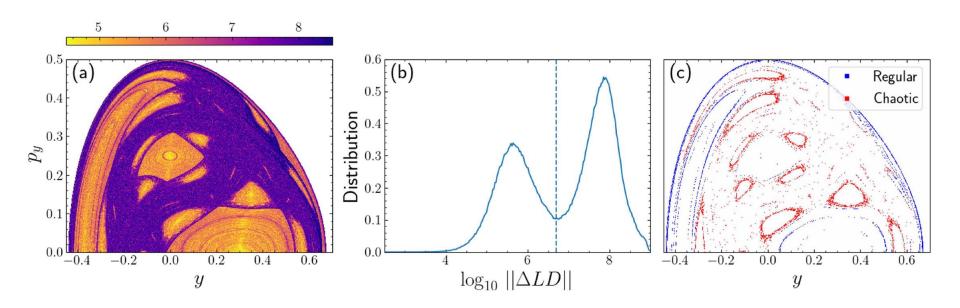
Misclassified orbits (< 10%)



Application: Hénon-Heiles system

A quantity related to the second derivative of the LDs was introduced in Daquin et al., Physica D (2022) and was used in Hillebrand et al., Chaos (2022) and Zimper et al., Physica D (2023):

$$\|\Delta LD\|(x) = \left|\frac{LD^f(y_i^+) - 2LD^f(x) + LD^f(y_i^-)}{\sigma^2}\right|.$$



Summary

- ✓ We introduced and successfully implemented computationally efficient ways to effectively identify chaos in conservative dynamical systems from the values of LDs at neighboring initial conditions.
- ✓ From the distributions of the indices' values we determine appropriate threshold values, which allow the characterization of orbits as regular or chaotic.
- ✓ Both the indices faced problems in correctly revealing the nature of some orbits mainly at the borders of stability islands.
- ✓ Both indices show overall very good performance, as their classifications are in accordance with the ones obtained by the SALI at a level of at least 90% agreement.
- ✓ Advantages:
 - **Easy to compute** (actually only the forward LDs are needed).
 - No need to know and to integrate the variational equations.
- ✓ These methods has also been successfully applied to 2D and 4D symplectic maps [Hillebrand et al., Chaos (2022) Zimper et al., Physica D (2023)]

References

- S., J. Phys. A, 34, 10029 (2001)
- Madrid & Mancho, Chaos, 19, 013111 (2009)
- Mendoza & Mancho, PRL, 105, 038501 (2010)
- Mancho, Wiggins, Curbelo & Mendoza, Commun. Nonlin. Sci. Num. Simul., 18, 3530 (2013)
- Lopesino, Balibrea, Wiggins & Mancho, Commun. Nonlin. Sci. Num. Simul., 27, 40 (2015)
- S. & Manos, Lect. Notes Phys., 915, 129 (2016)
- Lopesino, Balibrea-Iniesta, García-Garrido, Wiggins & Mancho, Int. J. Bifurc. Chaos, 27, 1730001 (2017)
- Agaoglou, Aguilar-Sanjuan, García-Garrido, González-Montoya, Katsanikas, Krajňák, Naik & Wiggins, 'Lagrangian descriptors: Discovery and quantification of phase space structure and transport', https://doi.org/10.5281/zenodo.3958985 (2020)
- Montes, Revuelta & Borondo, Commun. Nonlin. Sci. Num. Simul., 102, 105860 (2021)
- Daquin, Pédenon-Orlanducci, Agaoglou, García-Sánchez & Mancho, Physica D, 442, 133520 (2022)

Hillebrand, Zimper, Ngapasare, Katsanikas, Wiggins & S.: Chaos, 32, 123122 (2022), 'Quantifying chaos using Lagrangian descriptors'
Zimper, Ngapasare, Hillebrand, Katsanikas, Wiggins & S.: Physica D, 453, 133833 (2023), 'Performance of chaos diagnostics based on Lagrangian descriptors. Application to the 4D standard map'